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Abstract - A new method is described for solving the inverse problem of parameter identification ( 2-D) for the 
generation of images of the distribution of permittivity in the cross section of a pipe for multiphase flow using 
Electrical Capacitance Tomography. This method needs an a priori irrotational condition on the vector of 
electrical displacement in the flow cross section to obtain the uniqueness of the identification problem from a 
measurement of the voltage on the surface and using the normal component of the vector of electrical 
displacement, whose approximate value is obtained from capacitance measurements. 
This method takes into account the most important characteristics of the problem, namely: its nonlinearity, its ill 
posedness, the need for a proper theoretical regularization and the restrictions on the data measurement 
equipment which induce errors and could prevent one obtaining precise images.  
The identification problem is then reduced to solving a linear least square problem with non-convex quadratic 
restrictions. For this reason, in this new method, it is not necessary to solve the direct problem at each iteration. 
Finally, a method of low computational cost is obtained which allows the solution of problems in real time for 
industrial applications, as for example the analysis of the quality of the water-gas-oil mixture during the 
extraction and refining of petroleum. 
 
 
1.   INTRODUCTION 
Electrical Capacitance Tomography (ECT) has recently been tested to obtain image cross-sections of several 
industrial problems that involve dielectric materials. We are interested in particular in visualizing the cross 
section of a multiphase flow in pipelines, to be able to determine the permittivity distribution and hence the 
phase distribution in real time and without any a-priori information about the type of flow regime.  
The relation between the capacitance , the permittivity distribution defined on the two-dimensional cross 
section of the pipe line 

C
),( yxε  and the generated potential V, can be expressed as 
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n
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where  is the electrode surface and . We can consider this relation as a functional relation between 
the mutual capacitance measured in the electrode array and the permittivity distribution at the cross section. 

S ),( yxz =

Using this relation it is possible to develop alternative methods to solve the inverse problem of determining the 
permittivity ε  using measurements of the capacitance .  One possibility is find the unknown permittivity, 
solving the classical least-squares data fitting minimisation 

measC

2
2
1 )()(min measCCf −= εε         (2) 

where )(εC  is the computed capacitance for a given value of ε . However, the solution of problem (2) has the 
following difficulties: 
1) This objective function may be highly non-linear. 
2) The number of independent capacitance measurements , where  is the number of 
electrodes, is smaller than the needed discretisation of the permittivity distribution, and thus the discretised 
problem is under-determined and then the solution may not be unique (which is one of the characteristics of the 
ill-posed problems in the Hadamard sense [9]). 

2/)2( −NN N

3) Any method used to obtain a particular solution will be unstable due to the fact that the solution is sensitive 
to measurement errors and noise (which is another characteristic of the ill posedness of this problem [9]).  
It is then clear that any method that attempts to solve this problem has to consider the non-linearity and has to 
use a regularization technique to obtain numerically uniquely stable solutions. 
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There have been many methods reported in the literature.  Some of the methods linearise problem (2) and ignore 
the non-linear behaviour of the problem. Some other methods, [16], consider the non-linearity and use iterative 
methods, like Newton-Raphson, iterative Tikhonov, Landweber iteration and others. The problem here is to find 
the regularization parameter or the sequence of regularization parameters when a linear system is solved at each 
non-linear iteration. A routine that finds automatically the parameter by constructing an L-curve has been 
developed [10], but this algorithm has not yet been used in image reconstruction. A unique parameter used in 
Newton iterative Tikhonov, has to be found very accurately to obtain good images, as will be shown here. 
Actually this optimal parameter varies strongly from one flow regime to another, and the computation of the 
regularization parameter becomes the key and the expensive part of image reconstruction and it  is still an open 
question [9].  
In this work we describe a completely  new method to solve the inverse ECT problem, based on decoupling the 
original problem, to obtain simpler sub-problems. 
This method allow us to recover the permittivity distribution from capacitance measurements, using the only a-
priori information available that sets bounds on the permittivity and uses the additional condition of non-
rotationality of the electrical displacement vector. This condition is observed in pipeline flows [8]. It takes into 
account the characteristics of the measurement equipment and produces a practical algorithm. In [1]-[3], some of 
the components of the new method have already been outlined and the purpose of this work is to show the 
conceptual and numerical advantages of the new method with respect to the traditional least-squares formulation. 
The first advantage is the fact that in the new method the solution of the direct problem is not needed at each 
iteration as it is in the case of the least-squares formulation. The second important advantage is related to the 
decoupling of the original problem that allows the regularization with known and theoretically founded schemas, 
which is not the case in the traditional least-squares formulation due to the nonlinearity. 
In particular, we will show with numerical examples the high dependency of the spatial distribution of the 
permittivity obtained with the least-squares formulation to the selection of the Tikhonov regularization 
parameter. In a future work, we will also show the numerical advantages of the new method. 
This paper is organized as follows: in section 2, we describe the model and the inverse parameter identification 
problem; in section 3 some problems that appear in choosing the regularization parameter are shown when the 
classical least squares method is used. In section 4, the problem is analysed under the additional condition of 
non-rotationality of the  electrical displacement vector; in section 5 a novel methodology is described which is 
based on decoupling the original problem into five sub-problems. The conclusions are given in section 6. 
 
2.   THE FORWARD AND INVERSE PROBLEM 
The design of the cross section of a pipeline for multiphase flow is formed by three concentric circles (see Figure 
1), which determine three regions. Within the inner most circle  (with radius ) we have the multiphase 

flow with unknown permittivity , whereas in the other annular regions  and  with exterior 

radius  and , we have materials with known constant permittivities . The electrode’s array consists 

of  (8 to 16) contiguous sensing electrodes around the intermediate circle. The generated potential  in 
this configuration corresponding to the input potential in electrode  has then three 

components ,  and , corresponding naturally to each region. 
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Figure 1. Schematic representation of cross section of  pipeline. 
 
The electrodes, being very thin and assumed to have very small gaps between them, are modelled as 
equipotential surfaces with potential equal to one (lines in the D−2  model) covering the entire boundary 
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between  and . The screen is modelled as an equipotential line on the outer perimeter of  with 
potential equal to zero. 

2Ω 3Ω 3Ω

The potential distribution, , equal to one at electrode , is a linear function at the gap between electrode 

and its neighbours and it is equal to zero in the rest of 

)(iψ i
i 2Rz =  and has the expression (in angular coordinates) 
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i  and  being the angle that separates the electrodes. 0θ

The so called Forward Problem consists in given the permittivity distribution )(zε ,  find the 
capacitances  This is done solving first the following boundary value problem for the potentials 
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on 1Rz = , where  is the exterior  unit normal vector to the circle. 1n
In addition to eqns (4), we have  
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Finally, the mutual capacitance values are obtained by the formula 
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where  is the exterior unit unit vector to the circle of radius , 2n 2R K  is a constant with units of inverse 
potential and the electrode area is given by 
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We will consider the inverse problem as follows: 
Determine the value of ),( yxε  using  model (3)-(6), that reproduce the given )1(2

1 −NN  measured values 

of the capacitance  . measC )  ,...,2,1,( jiNji <=
 
3.   THE CLASSICAL METHOD OF SOLUTION OF THE INVERSE PROBLEM 
In this section we will discuss the difficulties found when solving our inverse problem  using the classical least-
squares data fitting minimisation  to find the unknown permittivity, , given some measurements of the 

capacitance in the presence of  measurement errors. 
1ε

ijC
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This is a non-linear ill-posed inverse problem.  Due to the ill-posednes, the measurement errors can be 
propagated and the optimal solution obtained can be far from the real solution [9]. To avoid this error 
propagation, it is necessary to regularise the optimisation problem to get the best possible approximation to the 
permittivity controlling the error propagation. This can be done using for example, the Tikhonov regularisation 
[9] that depends on a regularization parameter α , modifying the objective function as: 

2
1

2
12

1
1 )()()(min εαεε LCCf meas +−=        (7) 

where  is the computed capacitance for a given value of , )( 1εC 1ε L  is a regularisation operator and α  is the 
regularisation parameter. 
The solution of this non-linear optimisation problem is calculated iteratively by 

11
1

1 εεε ∆+=+ kk          (8) 

where the descent direction  is found solving the Tikhonov Gauss-Newton linear system of equations and if 

the initial approximation  is sufficiently close to the solution, the method converges. Conditions to guarantee 
global convergence from any initial approximation can be found in [12], [13]. 

1ε∆
0
1ε

The minimisation process will stop when the 2-norm of the gradient satisfies 1tolf <∇  (optimal solution), 

when no further precision can be achieved 21
1

1 tolkk <−+ εε  [14] or, when the Jacobian at some iteration  
becomes singular (convergences to a non-stationary singular point, [4]). 

k
1ε

In order to find the regularisation parameter α  in the Tikhonov regularization method, the L-curve algorithm 
[9],[10] can be used. However, the solution of the inverse problem (7) is very sensitive to the regularisation 
parameter α , and thus the problem of finding its optimal value accurately is extremely important as will now be 
shown.  Furthermore, as mentioned in the introduction, the permittivity distribution has to be found in real time 
and considering that in the real world application, the a-priori information about the flow regime inside the 
pipeline may not available, it will be clear with these examples that this traditional least-squares formulation 
cannot be used to solve the real noisy problem in real time, unless in the future a method to find the 
regularization parameter for these type of non-linear problems, in a cheaper and theoretically way, is developed.  
We will show now, using some results published in [15], that not only the optimal regularization parameter has 
to be found very precisely (resulting in an expensive procedure) to be able to get an accurate image for the 
permittivity, but also that this optimal parameter varies by several orders of magnitude from one flow regime to 
another. Assuming that in practice, there is no information about a possible change of flow regime in the 
pipeline, it makes it necessary to find the optimal regularization parameter again for each set of measurements, 
making the real time application almost impossible with this technique. 
In order to illustrate the above mentioned difficulties, in [15] the Tikhonov optimal regularisation parameter α  
was found for several synthetic problems designed for typical two-phase flow regimes, using capacitance data 
with a random normal distribution error of 2% added. Here, we will only present two of these examples. If the 
optimal regularization parameter is not found accurately, the images obtained can be completely wrong as will 
be shown in the first example, that consists of two objects with permittivity 2=ε  placed at the centre (see 
Figure 2). In the rest of the grid the permittivity is 1=ε . The corner of the L- curve that gives the optimal 
parameter is shown in Figure 3, and the different images obtained for each value of  the Tikhonov parameter are 
shown in Figure 4, and the optimal parameter of regularization corresponds to  . 710−=α
The second example consists of six objects, four at the center and two larger ones at the boundary with 
permittivity ε = 2.  The minimisation process was successful for α =10-6  (see Figures 5-7). 
These examples have shown that the order of magnitude of the optimal parameter varies strongly from one flow 
regime to another, and that only the optimal order of magnitude of the regularization parameter gives the right 
image. This implies that in a real application where the knowledge of the flow regime is not available, the 
computation of the optimal regularization parameter cannot be achieved  in an automatic way. 
 Taking these results into consideration, we can conclude that in order to solve our problem (and in many other 
non-linear cases without the needed a-priori information) it is necessary to develop an alternative method to the 
least-squares formulation in order to transform the problem into a simpler optimisation model that will allow  the 
regularization to be performed in an automatic, efficient and theoretically founded way, without the knowledge 
of the flow regime.  We will now present  the needed background to proceed to present the new method. 
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4.   ADDITIONAL ASSUMPTIONS AND RESULTS 
To propose a novel method, we need the additional assumption that the field of electrical displacement 

 satisfies that , that is,    is non-rotational, which can be considered an 
acceptable practical criterion in our application if the flow regime is not highly complex [8]. The non-
rotationality of , together with (3) for , imply the existence of a harmonic function  in such that 
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Applying the gradient operator to each side of this equation and taking the modulus we obtain the expression for 
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Then, if we know  we can obtain  from (11). In the following we describe how to obtain 

 in this method and thus, to obtain a tomographic image of a cross section on a pipeline. 
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In order to transform the boundary value problem (3)-(5) into an equivalent  system of integral equations that 
will allow us to build a functional to find  from the measured capacitances, we will use the boundary 
conditions (4) and Green functions. 
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Applying  the Green formula to the pairs  and ( , where ( )dV i ,)(
1 )nV i ,)(

1 ),( ξzd  and ),( ξzn  are the Green 

functions corresponding to the Dirichlet and Neumann problems for the Laplace operator in the disk  and 
using the expressions (10) and (12), the following relations are obtained 
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The following result allows us to use the system of integral eqns (10), (12)-(14) to build a functional to find  
from the measured capacitances. 
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Theorem 1. For each strictly positive function  of class  and continuous in 1ε )( 1
2 ΩC 1Rz ≤ , the unique 

classical solution of the boundary value problem (3)-(5) for  and , for , coincides 
with the solution of the integral equations system (10), (12)-(14) if the additional condition of non-rotationality 
of   is satisfied. The proof of this theorem has been given in [2] 
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5.   DESCRIPTION OF THE METHOD  
In this section we will describe the several steps that compounds the novel method and the details will be studied 
in a later paper. The novel method computes first  , then  to finally get  which allows computing 

the desired permittivity distribution  by the secondary relation (11). The method consists in the following 
steps: 
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obtained from (6) . The solution for would allow us to substitute in (15) the value of   by a partial sum. 
This is computed only once at the beginning.   
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potential), a Cauchy problem is solved for the Laplace equation in the annular region  to obtain . There 

exist stable procedures via regularization methods, to obtain approximate values of  and its normal 
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d) The discretisation grid for  can be selected using information on the measurement errors given by the 
equipment and on the number of electrodes used, as well as the required accuracy of the solution. In this form we 
obtain a number 

1Ω

M  of grid elements. The number M  is equal to the maximum number of elements of a 

partition  of the region  in which each component  is such that the instrument used to measure 

the mutual capacitances can detect the change of  in , where   is the value of  assigned to the 

component   as a result of the discretisation. 
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e) The boundary value problem (3)-(4) is reduced to the system of integral eqns (10), (12)-(14) and  is 
computed by introducing a functional that takes into account the relation (10), after applying the gradient 
operator to (10) and substituting the value of  in 
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From relations (10), (16) and (17) a functional is introduced such that, assuming that  and )(
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Functional (25) is minimized subject to the bounded  constraints: 
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where  and   are positive numbers fixed a-priori, depending on the permittivity values for the 
multiphase mix components, that we need to recover. 

minε maxε

f) The next step consists in the discretisation of functional (25) and the constraints (28) after the application of a 
convenient collocation method. We search  in the approximate form:  )(

1
iV

�
=

=
M

k
k

i
k

i zWazV
1

)()(
1 )()(       (29) 

where are the eigen-functions corresponding to the Neumann problem for the Laplace operator in the 

circle  and the coefficients   are unknown. Substituting (29) in the expression of functional (25) we get a 
new functional that is a finite dimensional approximation of this functional 

)(zWk

1Ω )(i
ka

2)()(2)()(
2

)()(

M

ii

M

ii

M

i
i

i
cNabDaaFaL ++++=�

�
��

�
�      (30) 

where 
M

⋅  denotes the vector modulus in  and Mℜ ( ),)(i
jki fF =  

, , ,   and , )jk(DD = )( jkNN = ti
M

ii aaa ),...,( )()(
1

)( = ti
M

ii FFb ),...,( )()(
1

)( = ti
M

iii GGGc ),...,,( )()(
2

)(
1

)( =
)(i

jkf , , ,  and   are the Fourier coefficients of the functions , , , 

,  with respect to the system 
jkD jkN )(i

jF )(i
jG )()( zf i

k )(zDk )(zNk

)(zFi )(zGi { }jW ,  and     given by  (26) and (27) and     )(zFi )(zGi

x
zWzg

y
zWzfzf k

i
k

i
i

k ∂
∂−

∂
∂= )()()()()()( ,       ζζζ

ζ
ζζ dzdWzWzD

R
kkk � ∇⋅∇+=

< 1

),()()()(          

                                           ζζζ
ζ

ζζ dznWzWzN
R

kkk � ∇⋅∇+=
< 1

),()()()(  

The choice of the basis {  reduces the degree of ill-posedness of the problem, since the differentiation 

of the potential , necessary for identification of permittivity  by (11), regarding this basis, is a stable 
procedure. Now, from relation (10), we obtain that constraints (32) are equivalent to the inequalities: 

}∞
=1)( kk zW

1ε

min

12)(

max

12

22 επ
ε

επ
ε R

aA
R i

i ≤≤     (31) 

min

12)(

max

12

22 επ
ε

επ
ε R

aB
R i

i ≤≤     (32) 

where ,  and ,  are the Fourier coefficients of )( )(i
jkiA α= )( )(i

jkiB β= )( i
jkα )(i

jkβ
x

W
zf

R

i ∂
∂

)(
1

   and 

x
W

zg
R

i ∂
∂

)(
1

 respectively, with respect to . Finally the optimisation problem that has to be solved to 

obtain the coefficients  of the approximate expression (29) of , is to minimize the functional (30) 
subject to the constraints (31) and (32). 

)(zWj

)(i
ka )()(

1 zV i

g) Once  has been obtained, the computation of  can be made numerically using (11). Function 

has to be evaluated at each element of the grid, which is used to obtain a tomographic image of the cross 
section of the pipeline. 

)(
1

iV )(
1

iε
)(

1
iε

 
6.   CONCLUSIONS 
1. In section 4 of this work it has been shown that the classical method of solution presents some difficulties to 
choose the optimal regularization parameter due to ill-posedness and non-linearity of the problem and the fact 
that there is no a priori information about the type of flow. 
2. The proposed method takes into account the important characteristics of the problem: its non-linearity, its ill-
posedness due to the intrinsic properties of the identification problem and the lack of data, the need to use a 
theoretically justified regularization method. These difficulties have not yet been solved completely by any of 
the existing methods as is discussed in the introduction. We see that the non-rotationality condition, which is 
satisfied for many dielectrical multi-phase flows in pipes, allows the decomposition of the inverse problem into 
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several simpler problems, and each one of them can be solved with a numerically stable procedure, with the 
necessary theoretical justification. More importantly for these simpler problems, we use a projective method to 
express the unknown potential with respect to a smooth basis of functions, that reduce the degree of ill-
posedness of the problem, since the differentiation of the potential, necessary for identification of permittivity, 
regarding this basis, is a stable procedure. 
3. Here it is not necessary to solve the direct problem at each iteration, as in the classical method of solution of 
the inverse problem. The optimisation problem in this method is minimizing a linear least squares functional 
subject to quadratic constraints and, as a consequence, the low computational cost will then allow the solution of 
this problem in real time for industrial applications. 
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